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An unsupervised segmentation and its performance evaluation technique are proposed for synthetic aper-
ture radar (SAR) image based on the mixture multiscale autoregressive (MMAR) model and the bootstrap
method. The segmentation-evaluation techniques consist of detecting the number of image regains, esti-
mating MMAR parameters by using bootstrap stochastic annealing expectation-maximization (BSAEM)
algorithm, and classifying pixels into region by using Bayesian classifier. Experimental results demonstrate
that the evaluation operation is robust, and the proposed segmentation method is superior to the tradi-
tional single resolution techniques, and considerably reduces the computing time over the EM algorithm.
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Synthetic aperture radar (SAR) imaging systems have
been widely used in the past several years for remote
sensing applications. One of the main advantages of these
systems is the ability to operate at any time of day, in
any weather conditions, and to improve the image reso-
lution for a given aperture size. However, coherent active
imaging has the drawback of leading to images that are
degraded by speckle noise which makes the images grainy
and deteriorate the image processing performances. The
low-level step of image segmentation, i.e., the decompo-
sition of the image in a tessellation of uniform areas, is a
crucial point of SAR images processing.

Numerous segmentation methods have been proposed
in the research literature, e.g., thresholding methods[1,2],
clustering methods[3,4], edge-based methods[5], region
splitting and merging methods[6,7], and multi-resolution
techniques[8−16]. Recently, to characterize and exploit
the scale-to-scale statistical variations in SAR image duo
to radar speckle[11], various multiscale stochastic models
have been developed and used for segmentation of SAR
image. Basserille et al. proposed a multiscale autoregres-
sive model for signal and image processing[15]. Fosgate
et al., Irving et al., and Kim et al. build the models rep-
resentative of each category of terrain of interest SAR
image and employ them in directing decisions on pixel
classification, segmentation behavior[11−13]. Comer et al.
proposed a segmentation algorithm based on the mul-
tiresolution Gaussian autoregressive model for the ob-
served image pyramid[17]. The algorithm used a multires-
olution Gaussian autoregressive model for the pyramid
representation of observed image, and assumes a mul-
tiscale Markov random field model for the class label
pyramid. Wen et al. proposed a mixture multiscale au-
toregressive (MMAR) model for the segmentation of SAR
image[18], and gave Bayesian segmentation for SAR im-

age based on the MMAR model, which parameters are
estimated by using expectation-maximization (EM) al-
gorithm. MMAR model provides a powerful multiscale
and semi-parameter framework for describing unknown
distributional shape of complex random field that evolve
in scale. However, the EM algorithm has the problem
that the solution converges to a local optimal due to the
dependence of the initial state of parameters in the pos-
terior distribution. On the other hand, in the statistical
segmentation, the time increases with the size of training
data set. In most of the real-world application, the size
of the training data is very large. As a result, the time
required by segmentation could be prohibitively large.
Finally, how good are these techniques in term of their
detection and classification performances is not known.

This letter addresses SAR image segmentation and
performance evaluation based Bootstrap technology and
mutiscale stochastic model on the tree without supervi-
sion. Firstly, the estimation algorithm by using Boot-
strap technique[19], namely, bootstrap stochastic anneal-
ing EM (BSAEM) algorithm, is proposed, which algo-
rithm improves the EM algorithm by adding an optimal
Bootstrap sample selection and decorrelation step to the
blind approach, and would converge more rapidly to the
good solution then the classical EM algorithm. Secondly,
the detection performance based on the MMAR model
is discussed, where the statistical probabilities of over-
detection and under-detection of the number of image
regions are defined, and the corresponding formula in
terms of the model parameters and the image quality are
derived. Thirdly, we define misclassification probabil-
ity for the Bayesian classifier and give a simple formula
to evaluate segmentation errors based on the parameter
estimates and classified data. Finally, tests have been
conducted on three real SAR images for evaluating de-
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tection and classification performance.
The starting point for our model development is a mul-

tiscale sequence XL,XL−1, · · · ,X0 of SAR image, where
XL and X0 correspond to the coarsest and finest reso-
lution images, respectively. The resolution varies dyadi-
cally between images at successive scales. More precisely,
we assume that the finest scale image X0 has a resolu-
tion of δ × δ and consists of an N × N array of pixels
(with N = 2M for some M). Hence, each coarser resolu-
tion image Xm has 2−mN × 2−mN pixels and resolution
2mδ×2mδ. Each pixel Xm(k, l) is obtained by taking the
coherent sum of complex fine-scale imagery over 2m×2m

blocks, performing log-detection (computing 20 times the
log-magnitude), and correcting for zero frequency gain
variations by subtracting the mean value. According,
each pixel in image Xm corresponds to four “child” pixels
in image Xm−1. This indicates that quadtree is natural
for the mapping. Each node s on the tree is associated
with one of the pixels Xm(k, l) corresponding to pixel
(k, l) of SAR image Xm.

As an example, Fig. 1 illustrates a multiscale sequence
of three SAR images, together with the quadtree map-
ping. We notice that the quadtree is different from the
quadtree in wavelet analysis for image processing. One
different is that there is some spatial connectivity be-
tween nodes at the same level in the quadtree of this
letter, however, there is no spatial connectivity in the
quadtree of wavelet for image analysis. We use the nota-
tion X(s) to indicate the pixel mapped to node s. The
scale of node s is denoted by m(s).

For complex SAR image, we define the MMAR model
of SAR imagery as

F [X(s)|Θ,Xs] =
K
∑

k=1

πkΦ

(

X(s) − ak,0 − ak,1X(sγ̄) − · · · − ak,pk
(sγ̄pk)

σk

)

, (1)

or

f [X(s)|Θ,Xs] =

K
∑

k=1

πk

σk

ϕ

(

X(s) − ak,0 − ak,1X(sγ̄) − · · · − ak,pk
(sγ̄pk)

σk

)

, (2)

where π1, π2, · · · , πK are the mixing proportions

with
K
∑

k=1

πk = 1, πk > 0, Θ = (π1, · · · , πK , θ),

θ = (θ1, · · · , θK), θk = (ak,0, · · · , ak,pk
, σk),

ak,0, · · · , ak,pk
are the k class autoregressive coefficients,

σ2
k is the k class variance. F is the distribution function,

and f is probability density function. K is the number of
classes, Xs is the set of X(sγ̄), · · · , X(sγ̄p) (p = max

k
pk),

and Φ(.) is the standard normal distribution function.
ϕ(.) is the probability density function of a standard
normal distribution. We denote this model by MMAR
(K, p1, · · · , pK). It is clear that MMAR (K, p1, · · · , pK)
is actually a mixture of K Gaussian MAR models, and
MAR is a special case of MMAR when K = 1.

Fig. 1. Sequence of three multiresolution SAR images mapped
onto a quadtree.

Given a SAR image with statistical MMAR distribu-
tion (1) or (2), Bootstrap samples, denoted by X∗(s), are
drawn from mscale SAR image. For Bootstrap samples,
the log-likelihood of the maximization likelihood (ML)
estimate of the MMAR parameters is given by

L(K,Θ) =
∑

N,{s|m(s)=m}

ℓs =
∑

N,{s|m(s)=m}

{

K
∑

k=1

Zs,k log(πk) −
K
∑

k=1

Zs,k log(σk) −
K
∑

k=1

Zs,ke∗ 2
ks

2σ2
k

}

,

(3)

where e∗ks = X∗(s) − ak,0 − ak,1X
∗(sγ̄) − · · · −

ak,pX
∗(sγ̄p), X∗(sγ̄) is parent of X∗(s), N is the number

of pixels in the Bootstrap samples. Zs is a K-dimensional
vector with component k = 1 if X(s) comes from the kth
component of the conditional distribution function and
otherwise k = 0.

The iterative BSAEM algorithm for estimating param-
eters by Eq. (3) consists of an E-step, a stochastic
step (S-step), an annealing step (A-step) and an M-step,
which can be described below:

E-step: Suppose that Θ is known. The missing data Z
are then replaced by their conditional expectations, con-
ditional on the parameters and on the data X. In this
case, the conditional expectation of the kth component of
Zs is just the conditional probability that the data X(s)
comes from the kth component of the MMAR. Let τs,k

be the conditional expectation of the kth component of
Zs. Then, the E-step equations are

τs,k =
πk(1/σk)ϕ(e∗ks/σk)

K
∑

k=1

πk(1/σk)ϕ(e∗ks/σk)

, k = 1, · · · , K, (4)

S-Step: Then, construct a Bernouilli random variable
zs,k of parameter τs,k.

A-Step: From zs,k and τs,k, one can construct another
random variable

ws,k = τs,k + hn(zs,k − τs,k), (5)
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where hn is a given sequence which slowly decreases to
zero during iterations.

M-Step: In this step, ws,k is considered artificially as
the a posterior probability of X∗(s), so that, at next it-

eration, we have

π̂k =

∑

{s|m(s)=0}

ws,k

N
, k = 1, · · · , K, (6)

σ̂2
k =

∑

{s|m(s)=m}

ws,k[X∗(s) − âk,0 − âk,1X
∗(sγ̄) − · · · − âk,pX

∗(sγ̄p)]2

∑

{s|m(s)=m}

ws,k

, k = 1, · · · , K, (7)

where (âk,0, âk,1, · · · , âk,p) satisfy the system of equa-
tions.

∑

{s|m(s)=m}

ws,kX∗(s)µ[X∗(s), i] =

p
∑

j=1

âk,j

∑

{s|m(s)=m}

· ws,kµ(X∗(s), j)µ(X∗(s), i), i = 1, · · · , p,
(8)

where µ[X∗(s), i] = 1 for i = 0 and µ(X∗(s), i) = X∗[sγ̄i]

for i > 0.
The estimates of the parameters are then obtained by

iterating the four steps until convergence. Parameters
K, pk can be selected by Bayesian information criterion
(BIC). That is

I(K) = − ln[L(K,Θ)] + ln(N − pmax)

·



3K − 1 +
K
∑

j=1

pj



 . (9)

Assume that the orders pk (k = 1, · · · , K) of the model
are known. Let K0 and K1 denote the real number and
detected number by the BIC of SAR image regions, re-
spectively, then the probabilities of over-detected and
under-detected of the number of SAR image regions can
be defined by

Pover = P{K1 − K0 > 0} = P{I(K1) < I(K0)}, (10)

and

Punder = P {K1 − K0 < 0} = P{I(K1) < I(K0)}, (11)

and the error-detected probability can be defined

Perror = P {K1 − K0 6= 0} , (12)

From Eqs. (10) and (11), Eq. (12) can be written as

Perror = P{I(K1) < I(K0)}, (13)

Applying Eq. (9) to I(K0) and I(K1) in Eq. (13), then

P{ln[L(K0,Θ)] − ln[L(K1,Θ)]

< 3 ln(N − pmax)(K0 − K1)}, (14)

In Eq. (2), when σ̂2
j > 1/2π, 0 < f(x(s)|Θ, Xs) < 1.

From ln w ≈ w − 1, (0 < w 6 2), then

ln[L(K,Θ)] =
∑

m(s)=l

ln[f(X(s)|Θ, Xs)]

≈
∑

m(s)=l

f(X(s)|Θ, Xs) − N. (15)

Assuming that πj = 1/K, and σ2
j = σ2, j = 1, 2, · · · , K,

Eq. (15) becomes

ln[L(K,Θ)] =
1√

2πKσ

∑

m(s)=l

K
∑

j=1

exp

{

−
e2

j(s)

2σ2

}

− N.

(16)
Pixel X(s) is a sample from the MMAR. After clas-
sification, X(s) belong to one and only one image re-
gion, say Gk. Let n0 = 0, nK = N . Without loss
of generality, assume {X(snk−1+1), · · · , X(snk

)} ∈ Gk,

(k = 1, · · · , K). By using exp(− 1
2w) ≈ 1 − 1

2w, we have

ln[L(K,Θ)] =
1√

2πKσ

K
∑

k=1

nk
∑

j=nk−1+1

exp

{

−e2
k(sj)

2σ2

}

−N

≈ 1√
2πKσ

K
∑

k=1

nk
∑

j=nk−1+1

(

1 − e2
k(sj)

2σ2

)

−N

≈ 1√
2πKσ



N− 1

2

K
∑

k=1

nk
∑

j=nk−1+1

e2
k(sj)

2σ2



−N.

(17)

Define

K
∑

k=1

nk
∑

j=nk−1+1

e2
k(sj)

2σ2
= YK , (18)

Eq. (17) becomes

ln[L(K,Θ)] ≈ 1√
2πKσ

[

N − 1

2
YK

]

− N. (19)

Because
∑nk

j=nk−1+1 e2
k(sj)/σ2 has a χ2 distribution with

degree of freedom (nk −nk−1 − pk − 1), YK has a χ2 dis-

tribution with degree of freedom (N − K −
∑K

j=1 pj).

Applying Eq. (19) to L(K0,Θ0) and L(K1,Θ1) in Eq.
(14) with Θ = Θ0 (when K = K0) and Θ = Θ1 (when
K = K1), we have

Perror =P

{

1

K1σ1
YK1

− 1

K0σ0
YK0

< 6
√

2π ln(N − pmax)

(K0 − K1) + 2N

(

1

K1σ1
− 1

K0σ0

)}

. (20)
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Let

Z =
1

K1σ1
YK1

− 1

K0σ0
YK0

, (21)

∆1 = 6
√

2π ln(N − pmax)(K0 − K1), (22)

∆2 = 2N

(

1

K1σ1
− 1

K0σ0

)

, (23)

∆ = ∆1 + ∆2. (24)

Equation (20) becomes

Perror = P{Z < ∆}. (25)

From statistical knowledge, probability density function
of random varible Z is

fZ(z) =



















C exp[(K0σ0/2)z]

[

m0
∑

l=0

(

m0

l

)

(m0 + m1 − l)!

am0+m1−l+1
(−z)l

]

(z < 0)

C exp[(K1σ1/2)z]

[

m0
∑

l=0

(

m0

l

)

(m0 + m1 − l)!

am0+m1−l+1
(z)l

]

(z > 0)

, (26)

where
(

m0

l

)

=
m0!

l!(m0 − l)!
, (27)

m0 =

N−K0+
K0
∑

j=1

pj

2
− 1 or m1 =

N−K1+
K1
∑

j=1

pj

2
− 1, (28)

a =
K0σ0 + K1σ1

2
, (29)

C =
1

m0!m1

(

K0σ0

2

)m0+1(
K1σ1

2

)m1+1

, (30)

and

Pover =

m0
∑

l=0

(

m1 + m0 − l
m1

)

γm1−m0+l+1e0

(γ + γ−1)m1+m0−l+1
(∆ < 0), (31)

Punder =



















m0
∑

l=0

(

m1 + m0 − l
m1

)

γm1−m0+l+1e0

(γ + γ−1)m1+m0−l+1
(∆ < 0)

m0
∑

l=0

(

m0 + m1 − l
m1

)

γm1−m0+l+1(1 + γ−2l−2(1 − e1))

(γ + γ−1)m1+m0−l+1
(∆ > 0)

, (32)

where

γ =

√

K1σ1

K0σ0
, (33)

e0 =

l
∑

j=0

(

−K0σ0

2 ∆
)j

j!
exp[(K0σ0/2)∆], (34)

e1 =
l
∑

j=0

(

K1σ1

2 ∆
)j

j!
exp[−(K1σ1/2)∆]. (35)

After the number of SAR image regions is detected and
the MMAR model parameters are estimated, SAR image
segmentation is performed by classifying pixels. In some
case, the Bayesian classifier is used for implementing clas-
sification. That is, if

πk0
Φ

[

ek0
(s)

σk0

]

> πkΦ

[

ek(s)

σk

]

,

(k = 1, 2, · · · , K, k 6= k0) , (36)

then
X(s) ∈ Gk0

. (37)

Suppose an image is segmented into K image regions,
denoted by G1, · · · , GK . Then given that the true im-
age region is Gk0

, the probability of misclassification is

Pmis(•|Gk0
) = πk0

K
∑

k=1,k 6=k0

∫

Gk

dΦ

(

e2
k,s

σk

)

. (38)

To demonstrate the segmentation performance of our
proposed algorithm, in this section we present three ex-
amples of unsupervised segmentation of complex SAR
images, which are size of 128×128 pixel resolution,
consisting of forest and grass (or cornfield) in Fig.
2(a). From the complex images, we generate an above-
mentioned quadtree representation consisting of L = 7
levels and use a third-order regression. Because it is
found that by increasing the regression order to p = 3
for both grass and forest, we can achieve a lower proba-
bility of misclassification and a good trade-off between
modeling accuracy and computational efficiency. We
randomly select 1200 representative pixels from the orig-
inal images. The detection of the number of SAR image
regions is given. The BSAEM algorithm is then used for
parameters estimation. In these detection and estima-
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tion, there are 200 repetitions. We compute the average
value of all the estimates. Then, Bayesian classification
is adopted for pixels classification.

Table 1 summarizes the detection results. It shows that
the number of SAR image regions indicated by the BIC
criterion is correct for three SAR images, that is, K1 = 2
is equal to the correct number of image regions, K0 = 2.
Probabilities of over-detecting and under-detecting the
number of SAR image regions are almost zero.

Figure 2(d) show segmentation results based on
BSAEM algorithm for the MMAR model, as well as
results (see Figs. 2(b) and (c)) based on the mixture
Gaussian model (MGM) on the single resolution and the
MMAR model using EM algorithm, respectively. Table 2
shows the misclassification probability of pixel classified
by BSAEM algorithm, EM algorithm and MGM for the
three SAR images. And Table 3 shows the time of seg-
mentation images under P4 computer. From Fig. 2 and
Table 2, the segmentation results based on the MMAR
model are better then that based on the MGM, while,
BSAEM algorithm and EM algorithm perform similarly.
However, Table 3 shows that BSAEM algorithm consid-
erably reduces the segmentation time.

Figure 3 illustrates the convergence of EM and BSAEM
with a plot of increment of training set log-likelihood over
the 125 iterations of the algorithm. The increment of
data likelihood is minimal after about 20 iterations, and

Table 1. Detection Results of SAR Images in
Fig. 2(a) (K0=2)

BIC
K1 Punder Pover

K = 1 K = 2 K = 3 K = 4

Fig. 2(a)

(top)
33 682 21 059 24 217 36 526 2 0 0

Fig. 2(a)

(middle)
19 865 13 682 16 049 26 118 2 0 0

Fig. 2(a)

(below)
30 157 17 286 17 419 24 589 2 0 1.58×10−6

Table 2. Misclassif ication Probabilities for Images
in Fig.2(a)

Pmis(.|forest) Pmis(.|grass)

MGM
MMAR

MGM
MMAR

EM BSAEM EM BSAEM

Fig. 2(a)(top) 4.290 2.719 4.467 6.361 1.618 1.369

Fig. 2(a)(middle) 20.82 3.028 1.892 10.283 0.9273 0.8184

Fig. 2(a)(below) 2.570 2.776 3.162 8.57 1.527 1.619

Table 3. Time of Segmentation under P4(2.3)
Computer(s)

MGM
MMAR

EM BSAEM

Fig. 2(a)(top) 194 2 637 470

Fig. 2(a)(middle) 328 4 324 793

Fig. 2(a)(below) 316 2 427 736

Fig. 2. (a) Original SAR images; (b) segmented images based
on MGM; (c) segmented images from EM algorithm based on
the MMAR; (d) segmented images from BSAEM algorithm
based on the MMAR.

Fig. 3. Convergence of EM and BSAEM algorithm.

convergence occurs at around 55 iterations. But, the
increment of data likelihood is minimal after about 80
iterations, and convergence occurs at around 110 itera-
tions.

By using Bootstrap technique, an unsupervised
Bayesian segmentation and its performance evaluation
can be achieved based on the MMAR model. The pro-
posed algorithm allows an estimation of parameters of
MMAR model of SAR image from a small-sized sample
with regard to that of the initial sample of observations.
As a result, the interest in the analysis of the images is
based on the gain in times of calculation. Experiments
demonstrated that for the segmentation techniques of
SAR image, the detection procedure is robust, the pa-
rameter estimates are accurate, and the results are in
good agreement.
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nology Research and Development Program of China
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16. A. Alonso-González, C. López-Mart́ınez, and P. Salem-
bier, in Proceedings of 2010 IEEE International Geo-
science and Remote Sensing Symposium 4043 (2010).

17. M. L. Comer and E. J. Delp, IEEE Trans. Image Process.
8, 408 (1999).

18. X. B. Wen and Z. Tian, Electron. Lett. 39, 1272 (2003).

19. B. Efron, Ann. Stat. 7, 1 (1979).

S11005-6


